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ABSTRACT: In this paper, with the example of two different polymorphs of KEu(MoO4)2, the
influence of the ordering of the A-cations on the luminescent properties in scheelite related
compounds (A′,A″)n[(B′,B″)O4]m is investigated. The polymorphs were synthesized using a
solid state method. The study confirmed the existence of only two polymorphic forms at
annealing temperature range 923−1203 K and ambient pressure: a low temperature anorthic α-
phase and a monoclinic high temperature β-phase with an incommensurately modulated
structure. The structures of both polymorphs were solved using transmission electron
microscopy and refined from synchrotron powder X-ray diffraction data. The monoclinic β-
KEu(MoO4)2 has a (3+1)-dimensional incommensurately modulated structure (superspace
group I2/b(αβ0)00, a = 5.52645(4) Å, b = 5.28277(4) Å, c = 11.73797(8) Å, γ = 91.2189(4)o, q
= 0.56821(2)a*−0.12388(3)b*), whereas the anorthic α-phase is (3+1)-dimensional
commensurately modulated (superspace group I1̅(αβγ)0, a = 5.58727(22) Å, b =
5.29188(18)Å, c = 11.7120(4) Å, α = 90.485(3)o, β = 88.074(3)o, γ = 91.0270(23)o,
q = 1/2a* + 1/2c*). In both cases the modulation arises due to Eu/K cation ordering at the A site: the formation of a 2-
dimensional Eu3+ network is characteristic for the α-phase, while a 3-dimensional Eu3+-framework is observed for the β-phase
structure. The luminescent properties of KEu(MoO4)2 samples prepared under different annealing conditions were measured,
and the relation between their optical properties and their structures is discussed.

1. INTRODUCTION
White light-emitting diodes (WLEDs) are promising for
replacing conventional fluorescent and incandescent lamps.
They are highly reliable, have a long lifetime with low energy
consumption, and are environmentally friendly.1 Their
availability can result in exciting new applications as medical
and architecture lighting, portable electronics backlights, etc.2

Rare earth doped solid-state molybdates and tungstates
exhibit outstanding chemical stability and long wavelength
emission. Among these, rare earth doped scheelite-type
(CaWO4) molybdates and tungstates have a large potential
for use in WLEDs.3−7 Recently a new application field has
emerged for these materials as thermographic phosphors, due
to their capacity to accurately visualize temperature gradients
with high spatial resolution.8 Due to charge transfer from
oxygen to metal, tungstate and molybdate phosphors have
intense, broad absorption bands in the near-UV region. Some
scheelite-type compounds, such as PbMoO4, KGd(WO4)2,
NaBi(WO4)2 and MWO4 (M = Pb, Cd, Ca) are well-known
and used, while other MLn(BO4)2 (M = Li, Na, K, Ag; Ln =

lanthanides, B = W, Mo) materials with Eu3+ cations are
frequently suggested as red phosphors for WLEDs. For
example, NaEu(WO4)2 and KGd0.75Eu0.25(MoO4)2 show
strong, saturated red emission.9,10

The scheelite-type ABO4 (CaWO4) structure is built from
columns of [...- AO8 - BO4 - ...] directed along the c-axis. The
AO8 polyhedra and BO4 tetrahedra form a 3D framework by
sharing common vertices. The A and/or B cations can be
partially substituted to form (A′,A″)n[(B′,B″)O4]m (A′, A″ =
alkali, alkaline-earth, or rare-earth elements; B′, B″ = Mo, W).
Such compounds are relatively simple to prepare and often
have good stability and good optical properties. A large amount
of vacancies can be present at the A cation site, resulting in a
(A′+A″):(B′O4+B″O4) ratio different from 1:1. The substitu-
tion of Ca2+ cations in CaBO4 (B = W, Mo) by a combination
ofM+ (M = Li+, Na+, K+, Ag+) and a trivalent cation leads to the
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formation of MR(BO4)2 (R = rare earth elements, Y, Bi)
compounds. The existence of MR(MoO4)2 (M = Li, Na, Ag)
molybdenum oxides with a scheelite-type tetragonal structure
has been reported for all rare earth elements.11−28

KR(MoO4)2 double molybdates have a variety of crystal
structures and polymorphs that can be divided in scheelite-type
modifications (R = La−Dy) and non-scheelite modifications (R
= Dy−Lu) with the KY(MoO4)2-type structure (space group
Pbcn29). Three groups of scheelite-type modifications can be
selected: 1) tetragonal (R = La−Sm) phases30,31 or phases with
a small monoclinic distortion of the scheelite subcell;32,33 2)
phases with the incommensurate modulated structure (R =
Nd,34 Sm35) (superspace group I2/b(αβ0)00); and 3) anorthic
phases with the α-KEu(MoO4)2 structure (space group P1 ̅36).

In contrast to the tetragonal MR(MoO4)2 (M = Li+, Na+, K+,
Ag+; R = Ln, Y, Bi) compounds where M+ and R3+ are
statistically distributed over the structure, the K+ and Eu3+

cations in α-KEu(MoO4)2 are ordered. Among the incom-
mensurately modulated structures, the A site cations are
completely ordered in KNd(MoO4)2,

34 while they are only
partially ordered in KSm(MoO4)2.

35 It should be noted that the
data about the number of polymorph modifications for
KEu(MoO4)2 are contradictory. Klevtsov et al.37 selected five
modifications of KEu(MoO4)2 (anorthic α-phase→ monoclinic
β-phase with the α- KSm(MoO4)2-type structure (IM
structure37) × monoclinic β′-phase with α-KBi(MoO4)2-type
structure (unknown structure) → orthorhombic γ-phase with
the KY(MoO4)2-type structure → δ-phase (unknown struc-

Table 1. Crystal Data, Data Collection, and Refinement of KEu(MoO4)2 Polymorphs

formula β-KEu(MoO4)2 α-KEu(MoO4)2
formula weight (g) 510.93
temperature (K) 293(2)
cell setting monoclinic anorthic
super space group I2/b(αβ0)00 I1̅(αβγ)0
lattice parameters: 5.52645(4) 5.58727(22)
a (Å) 5.28277(4) 5.29188(18)
b (Å) 11.73797(8) 11.7120(4)
c (Å) 90.485(3)
α (deg) 88.074(3)
β (deg) 91.2189(4) 91.0270(23)
γ (deg) 342.612(5) 346.03(3)
V (Å3) 0.56821(2)a* − 0.12388(3)b* 1/2a* + 1/2c*
q vector
formula units, Z 2 2
calcd density, Dx (g × cm−3) 4.951(8) 4.9038(4)
color light-brown white
Data collection
diffractometer MAR345
radiation/wavelength (λ, Å) synchrotron/0.6692
radiation monochromator Si(111) double crystal
absorption coefficient, μ (mm−1) 12.832 12.553
F(000) 460 460
2θ range (deg) 3.002−34.298 2.000−34.708
step scan (2θ) 0.004 0.004
Imax 20846 20127
no. of points 7825 9346
Refinement
refinement Rietveld
background function Legendre polynomials, 16 terms
the number of reflections (all/observed) 864/861 447/445
among them:
main 124/124 220/218
the first-order satellites 245/245 227/227
the second-order satellites 246/244
the third-order satellites 249/248
no. of refined parameters/refined atomic parameters 97/69 54/30
R and Rw (%) for Bragg reflections (Rall/Robs) 1.15/1.12 and 1.43/1.40 1.50/1.49 and 2.05/2.05
among them:
main 0.74/0.74 and 1.09/1.09 1.25/1.24 and 1.90/1.89
the first-order satellites 1.26/1.26 and 1.40/1.40 1.85/1.85 and 2.22/2.22
the second-order satellites 1.90/1.72 and 1.66/1.55
the third-order satellites 1.57/1.52 and 1.41/1.40
RP and RwP; Rexp 2.35 and 3.30; 3.32 2.96 and 4.16; 3.04
goodness of fit (ChiQ) 0.99 1.37
max./min residual density (e × Å−3) 0.13/−0.12 0.30/−0.26
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ture) with increasing temperature, while other authors only
discussed anorthic α- and monoclinic β-modifications (β′-phase
in accordance with Klevtsov et al.37). According to Klevtsov et
al.37 the pure orthorhombic γ-phase with the KY(MoO4)2-type
structure can be synthesized by annealing at 1123 K followed
by quenching to room temperature. β′-KEu(MoO4)2 was
grown from the melt, and the crystal structure of this phase was
described as monoclinic36,38−40 but not specified in detail. It
should be noted that different authors have indexed the X-ray
powder diffraction (XRPD) patterns with different unit cell
parameters.36,38,39 Comparison of data from different authors is
difficult because XRPD patterns are almost absent in the
papers.35 Using the structural data obtained for KNd(MoO4)2,
we have shown that all reflections listed in JCPDS PDF2 No.
31-1006 for the monoclinic (β-phase in accordance with
Klevtsov et al.37) β- KEu(MoO4)2 can be indexed successfully
using the unit cell parameters a = 5.5241(17) Å, b = 5.2864(15)
Å, c = 11.713(3) Å, γ = 91.247(17)°, and q = 0.5641(2)a* −
0.1335(4)b* in the monoclinic superspace group,
I2/b(αβ0)00.34

C. Guo et al.13 studied the influence of the calcination
temperature from 823 to 1173 K on the luminescent properties
of KEu(MoO4)2 and showed that the anorthic α-KEu(MoO4)2
structure does not change by increasing the calcination
temperature from 823 to 973 K. According to C. Guo et al.,
XRPD patterns of KEu(MoO4)2 samples prepared at
calcination temperatures above 1073 K are in agreement with
the JCPDS PDF2 No. 32-0782. It was found that the intensity
of the red emission line peaking at 616 nm owing to the electric
dipole transition 5D0 →7F2 for KEu(MoO4)2 increases with
increasing sintering temperature and reaches a maximum at
1073 K. Thus, the luminescent intensity of monoclinic
KEu(MoO4)2 is stronger than that of the phosphors with an
anorthic structure. The intensities of the phosphors decrease as
the processing temperature increases up to 1173 K.13 It should
be noted that the authors completely ignore the presence of
small intensity reflections over the 2θ range 10−20° on the
XRPD patterns of the KEu(MoO4)2 samples prepared at
calcination temperatures above 1073 K. These small intensity
reflections were not listed in JCPDS PDF2 No. 32-0782 for
KEu(MoO4)2, but they are clearly observed on the XRPD
patterns. The high luminescent intensity for the sample
prepared at 1073 K can result from a small amount of
KEu(MoO4)2 phase with an incommensurately modulated
scheelite-type structure.
The aim of the present paper is to reveal the relation

between the luminescent properties and structure for different
modifications of KEu(MoO4)2.

2. EXPERIMENTAL SECTION
2.1. Materials and Sample Preparation. The low-temperature

(LT) α-modification of KEu(MoO4)2 was prepared from a (1:1:4)
stoichiometric mixture of K2CO3 (99.99%), Eu2O3 (99.99%), and
MoO3 (99.99%), by a routine ceramic technique in a Pt crucible at 923
± 10 K for 30 h in air followed by slow cooling in the furnace from
923 K to room temperature (TR). α-KEu(MoO4)2 was annealed at
different temperatures (973, 1023, 1073, 1123, 1173, and 1203 K) for
12 h and cooled under different cooling conditions (slow cooling from
the annealing temperature to TR, quenching from the annealing
temperature to liquid nitrogen (N2)) to solve the unclear problem
with the number of polymorph modifications (Table S1). The high-
temperature (HT) β-KEu(MoO4)2 was synthesized from the α-phase
by annealing at 1203 ± 10 K for 10 h in air followed by quick
quenching from the high temperature to liquid nitrogen temperature.

2.2. Characterization. Powder X-ray diffraction (PXRD) patterns
were collected on a Huber G670 Guinier diffractometer (CuKα1
radiation, λ = 1.5406 Å, curved Ge(111) monochromator, trans-
mission geometry, image plate detector) for the determination of the
unit cell parameters. PXRD data were collected at room temperature
over the 4°−100° 2θ range with steps of 0.005°. To determine the unit
cell parameters, the PXRD data were refined by Le Bail
decomposition41 using the JANA2006 software.42,43

For the transmission electron microscopy study, the samples were
made by crushing the powder in an agate mortar and dispersing the
crushed powder in methanol. Several drops of this solution were
deposited on a copper grid covered with a holey carbon film. Selected
area electron diffraction (SAED) patterns were obtained using a
Philips CM20 transmission electron microscope operated at 200 kV,
equipped with a CCD camera. The elemental composition of the
samples was confirmed by energy dispersive X-ray (EDX) analysis
performed with a Philips CM20 microscope with an Oxford INCA
attachment. For the EDX analysis, the results were based on the KK,
EuL, and MoL lines.

High resolution high angle annular dark field scanning transmission
electron microscopy (HAADF-STEM) images were obtained on a FEI
Titan 60-300 transmission electron microscope equipped with a probe
aberration corrector, operated at 300 kV.

The synchrotron X-ray powder diffraction (SXPD) data were
collected at the BM01A beamline (Swiss-Norwegian Beamline) of the
European Synchrotron Radiation Facility (ESRF, Grenoble, France). A
wavelength of 0.6692 Å was selected using a Si(111) double crystal
monochromator, and the synchrotron beam was focused on a spot size
of 0.3 mm × 0.3 mm using a combination of curved mirrors and
sagittal bent second crystal. The sample was put into a borosilicate
capillary of 0.5 mm diameter, and the data were collected at room
temperature. A Mar345 image plate detector was used to register the
powder patterns. The sample-to-detector distance of 250 mm was
calibrated using a LaB6 reference powder. Exposure times per sample
were typically 30 s per image, and the samples were rotated during
data collection at a speed of 1° s−1. Exposure times were chosen to
avoid any pixel saturation. Details of experiments and characteristics of
the final structure refinements are listed in Table 1. Rietveld analysis of
the incommensurately modulated structure was performed using the
JANA2006 program package.42,43 Illustrations were produced with this
package in combination with the program DIAMOND.44

Electron Energy Loss Spectroscopy (EELS) was performed on a
monochromated Titan 80-300 microscope operated at 80 keV to
reduce knock-on damage with an energy resolution of 100 meV. Data
were acquired with a 0.01 eV/pixel dispersion and a 0.2 ms exposure
time in thin areas of the sample to avoid multiple scattering to alter the
results. The tail of the Zero-Loss was removed by subtraction of a
second-order polynomial background fit.

Luminescent emission and excitation spectra were recorded on an
Edinburgh Instruments FS920 fluorescence spectrometer with a
monochromated 450W Xe arc as the excitation source. Decay profiles
were collected using an Andor intensified CCD (Andor DH720)
connected to a 500 mm spectrograph, combined with a dye laser as
excitation source. Temperature dependent measurements were
performed using an Oxford Optistat CF cryostat.

3. RESULTS AND DISCUSSION
3.1. Elemental Composition. The composition of both

KEu(MoO4)2 modifications was verified using EDX analysis at
4 points for 10 different crystallites of which also electron
diffraction patterns were taken. The compositions were found
to be 24.5(2) at.% K: 25.3(4) at.% Eu: 50.2(4) at.% Mo and
24.7(7) at.% K: 25.1(1) at.% Eu: 50.2(7) at.% Mo for the β-
and α-modification, respectively. This is close to the nominal
KEu(MoO4)2 composition.

3.2. Preliminary Characterization. PXRD patterns of α-
KEu(MoO4)2 and the samples prepared from the α-phase
under different annealing and cooling conditions are shown in
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Figure 1. All reflections of the PXRD pattern of the α-phase
correspond to the anorthic structure (space group P1 ̅36) with
unit cell parameters refined by Le Bail decomposition: a =
11.1869(2) Å, b = 5.30038(6) Å, c = 6.93707(8) Å, α =
112.4276(8)°, β = 111.5964(9)°, γ = 90.9988(9)°. PXRD
patterns of other samples prepared from the α-phase differ
insignificantly (Figure 1). The main feature of all PXRD
patterns of these samples is the presence of two fairly intense
reflections in the 8°−11° 2θ range (shown in the green ellipse
in Figure 1a). Earlier similar reflections were observed on
PXRD patterns of KR(MoO4)2 (R = Nd,34 Sm35) with
incommensurately modulated structures and indexed as 0001
and 1011 ̅, respectively. The positions of these satellite
reflections on PXRD patterns are almost independent of the
heating and cooling conditions, while the positions of the basic

reflections change significantly (Figure 1b). The unit cell
parameters were refined by Le Bail decomposition using the
data of the incommensurately modulated KNd(MoO4)2 crystal
structure as initial parameters. The unit cell parameters
determined by Le Bail decomposition from the PXRD patterns
are given in Table S1. According to Table S1 and Figure 1 the
α → β phase transition is not reversible. Thus, PXRD studies
do not show any orthorhombic γ-KEu(MoO4)2 phase with the
KY(MoO4)2-type structure but show the existence of only two
modifications for KEu(MoO4)2: an anorthic α-phase and a
monoclinic β-modification with incommensurate modulated
structure.

3.3. Electron Diffraction Study. HT β-Phase. [001]*β,
[100]*β, and [11̅0]*β ED patterns of β-KEu(MoO4)2 (Figure
2) show a high likeness with those of KR(MoO4)2 (R = Nd,17

Figure 1. Part of the PXRD patterns of the KEu(MoO4)2 samples
prepared from α-KEu(MoO4)2 (1) by annealing at 973 K (2), 1023 K
(3), 1073 K (4), 1123 K (5), 1173 K (6), and at 1203 ± 10 K followed
by fast quenching from the high temperature to liquid nitrogen (β-
KEu(MoO4)2 (7)) in 2θ ranges of 5−51° (a) and 27−28.75° (b).

Figure 2. ED patterns along the main zone axes for the monoclinic β-
KEu(MoO4)2.

Figure 3. ED patterns along the main zone axes for the anorthic α-
KEu(MoO4)2.
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Sm18), which have a (3+1)D incommensurately modulated
structure. The reflections in the [11̅0]*β and [100]*β ED
patterns all correspond to the tetragonal scheelite subcell with
parameters as ≈ 5.46 Å, cs ≈ 11.86 Å (s refers to the scheelite-
type unit cell) and thus are considered main reflections.
However, next to main reflections, low intensity reflections are
observed in the other ED patterns, [001]*β and [111]*β. These
are satellite reflections that need four hklm integers to be
indexed, corresponding to H = ha* + kb* + lc* + mq, with
modulation vector q ≈ 0.57as* − 0.122bs* and m ≠ 0. The m =
0 reflections are the main reflections. The values of the q vector
components cannot be expressed as rational values and
therefore designate the structure as incommensurately modu-
lated. The reflection conditions hklm: h + k + l = 2n and hk0m:
h, k = 2n correspond to the (3+1)D superspace group
I2/b(αβ0)00 (unique axis c) (15.1.4.1 in Stokes-Campbell-van
Smaalen notations, B2/b(αβ0)00 in a standard setting).45 The
[11̅0]* pattern shows hk00: h, k = 2n+1 reflections that are
forbidden by the I2/b symmetry. However, on tilting the
sample around the [hk00] direction, these reflections become
weaker and finally disappear in the [001]* pattern. Therefore,
these reflections are due to double diffraction, not violating the
I2/b symmetry.
LT α-Phase. [010]*α, [100]*α, [120]*α, and [001]*α ED

patterns of α-KEu(MoO4)2 are shown in Figure 3. They can be
indexed using the space group P1̅ with the unit-cell parameters
refined from the PXRD pattern. The relation between the unit-
cell vectors of the monoclinic (β-phase) and the anorthic unit
cell (α-phase) is as follows: [010]*α = [001]*β, [100]*α =
[100]*β, and [120]*α = [11 ̅0]*β. The difference between the β-
phase and the α-phase is clearly observed when comparing the
[010]*α and [001]*β ED patterns, whereas the [100]*α and
[120]*α differ only slightly from [100]*β and [11 ̅0]*β,
respectively.
3.4. Refinement of the KEu(MoO4)2 Crystal Structures.

HT β-Phase. The SXPD data were collected in the 2θ range of
3.002−34.298° with steps of 0.004°. The structure was refined
against the SXPD data in the scheelite-type setting with
superspace group I2/b(αβ0)00. The cell parameters and q
vector from electron microscopy were used as input and refined
as a = 5.52645(4) Å, b = 5.28277(4) Å, c = 11.73797(8) Å, γ =
91.2189(4)°, q ≈ 0.568a* − 0.1239b*. Refining the unit cell
and profile parameters together allowed to index 864 of the
main reflections and up to third-order satellite reflections
(Table 1 and Figure 4). In the lower-angle range (3° ≤ 2θ ≤
11.6°), the first-order satellites are the strongest reflections and
also the third-order satellites are clearly present, whereas of the
main reflections only three weak ones are present (Figure 4).
For the initial parameters of the refinement, the Mo and O

atomic parameters of KNd(MoO4)2
34 were used, including the

displacive modulation function’s first-order Fourier amplitudes,
completed by K and Eu occupying the A position statistically
(x1 = 0.5, x2 = 0.25, x3 = 0.88). The displacive modulation
functions, atomic coordinates, and isotropic atomic displace-
ment parameters were subsequently refined. According to the
KNd(MoO4)2

34 model of the occupation modulation in the A
site, two Crenel functions (Figure S2 of the Supporting
Information) were chosen for the K and Eu atomic domains
with parameters x4

0 = 0 (K) and x4
0 = 0.5 (Eu) and an

occupation parameter o = 0.5 for both A atoms (crenel-I
model). The occupation parameters were fixed to satisfy the
EDX results. Acceptable values of R were obtained for the main
reflections and higher R values for satellite reflections. The

calculated electron and residual electron density near the A =
(K0.5Eu0.5) position showed that the assumption of an average
half occupation along the internal axis x4 by both K and Eu was
not correct.
The crenel-I model was improved by refining the occupation

parameters to o[K1] = 0.9851(1) and o[Eu2] = 0.015(1) (0 < t
< 0.5) and o[Eu1] = 0.985(1) and o[K2] = 0.015(1) (0.5 < t <
1) (crenel-II model). The coordinates (x, y, z), ADPs, and
displacive modulations of K1 and K2 and of Eu1 and Eu2 were
fixed to be equal, and further restraints o[K1] = o[Eu1] = 1 −
o[Eu2], o[Eu2] = o[K2] were used. Overall only o[Eu1] was
included as an additional refined parameter compared to the
crenel-I model. Two harmonic terms were included in the
displacive modulations for the Eu/K cations, three for the Mo
and O atoms.
The crenel-II model was successfully refined using isotropic

atomic displacement parameters (ADP). The sufficiently large
ratio between observed reflections and atomic refined
parameters (864/69 > 8.9) allowed the refinement of the
anisotropic ADP for K, Eu, and Mo cations. The reliability
factors Rall = 1.15%, Rp = 2.35% showed that the experimental
and calculated profile agree well. Table 1 shows further
numerical data on the data collection and refinement. Tables S2
and S3 of the Supporting Information list the atomic
coordinates, crystallographic parameters, modulation parame-
ters, and interatomic distances for β-KEu(MoO4)2. Figure 4
shows the experimental, calculated, and difference XRD
patterns.

LT α-Phase. The SXPD data were collected in the 2θ range
of 2.000−34.708° with steps of 0.004°. In accordance with
Klevtsova et al.36 and our PXRD and ED study, the α-
KEu(MoO4)2 has the anorthic scheelite-type structure (space
group P1̅) but can also be considered in the scheelite-type
settings as a commensurately modulated structure with the
anorthic superspace group I1 ̅(αβγ)0 and the modulation vector
q = 1/2as* + 0bs* + 1/2cs*. [The transformation matrix from
the commensurately modulated subcell (s) to the anorthic
supercell

Figure 4. Experimental, calculated, and difference SXPD patterns for
β-KEu(MoO4)2. Tick marks denote the peak positions of possible
Bragg reflections for (a) the main reflections and (b) satellites. The
inset shows a part of the profile with the indexation of some
reflections. The pair of strong low-angle satellites is a characteristic
feature of the scheelite-like incommensurate structures.
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=
−

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟P T( 1) is

2 0 0
0 1 0
1/2 0 1/2

in the matrix equation AP1 ̅ = As*T.] The fractional atomic
coordinates of CaWO4 were used as the initial parameters for
the refinement of the average structure after their trans-
formation from space group I41/a to I1̅. According to the
analysis of the residual electron density maps, two Crenel
functions were applied for the K and Eu atoms with occupation
parameter o = 0.5 for both A atoms, Eu x4

0 = 0 and K x4
0 = 0.5.

The occupation parameters were fixed in agreement with the
EDX results. The displacive modulations were approximated
with one harmonic term for the Eu, K, Mo, and O atoms. The
structure has been refined as commensurately modulated with
t0 = 1/4.
The reliability factors Rall = 1.53%, Rp = 2.96% indicate that

the experimental and calculated profiles agree well. Table 1 lists
further data on the refinement. Tables S4−S5 lists the atomic
coordinates, crystallographic parameters, modulation parame-
ters, and interatomic distances of α-KEu(MoO4)2. Figure 6
shows the experimental, calculated, and difference SXRD
patterns.
3.5. Specific Features of the KEu(MoO4)2 Crystal

Structures. The incommensurately modulated scheelite-type
β-phase has strong satellite reflections on the X-ray diffraction
patterns, some even stronger than many main reflections
(Figure 4), with also strong reflections at low angles (inset
Figure 4). These features are characteristic for the incom-
mensurately modulated scheelite-type β-phases.
The scheelite-type ABO4 (CaWO4) structure exists of

[...-AO8 - BO4- ...] columns oriented along the c-axis. For the
A positions, many different distributions of cations have been
reported, ordered, and disordered and with positions fully or
partially occupied, whereas the B positions were always fully
occupied and topologically identical. The K and Eu cation
ordering in the β-phase is demonstrated in Figure 5, showing
the 9a × 8.5b × 1c representative portion of the structure. The
distribution of K and Eu in the A position is aperiodic in the ab
plane and periodic along the c axis (Figure 5). The ionic charge
and radius of K and Eu cations, as well as their electronic
structure and covalent bonding preferences are different, and
therefore a different first coordination sphere environment is
required. The A-O distances are more spread along the internal
coordinate t for the K−O values than for the Eu−O values
(Figure S3). The data in Table S4 of the Supporting
Information reflect that two distortion modes with either
stretching of the Mo−O bonds (1.92−1.70 Å) or bending of
the O−Mo−O bond angles (∼132−93°) are active, similar to
the situation observed in other incommensurately modulated
cation-ordered scheelite-type structures.46

The structure of β-KEu(MoO4)2 can, like other scheelite-
type compounds, be described as columns along the c-axis
consisting of A cations and MoO4 (Figure 5). Each column
consists of either {KMoO4} or {EuMoO4} units. As a result, it
can be clearly seen in the ab projection that the K and Eu
distribution over the structure follows an incommensurate
compositional modulation wave propagating in the direction of
vector q = αa* + βb*. Four {KMoO4} or {EuMoO4} columns
form 4-membered blocks grouped into “dimers” and “trimers”
(respectively indicated in orange and yellow in Figure 5) along
the [010] direction of the scheelite subcell. Aperiodic

alternation of the “dimers” and “trimers” can be considered
as the origin of the incommensurability in the β-phase.
The ac projections of the crystal structure are shown in

Figure 7 for the two KEu(MoO4)2 modifications. The
difference between them lies in the ordering of the cations in
the A-sublattice of the scheelite-type structure, clearly observed
in these projections. The difference and similarity between the
structures can be better understood if we consider the mutual
arrangement of Eu3+ and the geometry of their surroundings by
neighboring Eu3+ cations.

Figure 5. A portion of the β-KEu(MoO4)2 aperiodic structure in the
ab projection. The red balls and blue rings indicate Eu and K positions,
respectively. The [MoO4] tetrahedra are represented by their edges.
The gray-and-white wave indicates the continuously changing chemical
composition from mainly {Eu[MoO4]} (center of the gray part) to
mainly {K[MoO4]} (center of the white part). The direction and
length of this wave (arrow) is parallel to the q vector with length 1/|q|.
The dimers (marked in orange) and trimers (marked in yellow) of the
{EuMoO4} columns are marked.

Figure 6. Experimental, calculated, and difference SXPD patterns for
α-KEu(MoO4)2. Tick marks denote the peak positions of possible
Bragg reflections for (a) the main reflections and (b) satellites.
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In the α-phase, the ordering of the Eu3+ and K+ cations leads
to the formation of similar zigzag Eu3+- and K+-layers, which are
confined to the (101) plane and alternate along the [100]
direction of the scheelite-type unit cell (Figure 7b). Two
neighboring Eu3+-layers are separated by a similar zigzag K+-
layer. The shortest distance between two nearest Eu3+ cations is
equal to 9 Å between layers, and it varies from 3.889(7) Å to
3.981(7) Å within the layer (Table S6 of the Supporting
Information). Six Eu3+ cations form six-membered rings (Figure
8a), and a Eu3+-layer can be represented as constructed from
these rings (Figure 8b). Thus, the cation ordering in the α-
phase leads to the formation of a 2D Eu3+ network. In the β-
phase, similar six-membered Eu3+-rings can be selected (Figure
8c) with Eu3+−Eu3+ distances between 3.83(7) Å and 4.20(9) Å
(Table S4 of the Supporting Information). However, unlike in
the α-phase, these rings form a 3D Eu3+ framework (Figure 8d).
In a previous paper, we summarized the crystal structure data

for all (A′,A″)1−xBO4 (B = Mo, W) scheelites, showing that the
ordering of the A-site cations depends on the difference in their
ionic radii r(A′)-r(A″) and on the amount of cation vacancies
x.46 Like other NaR(MoO4)2 (R = rare earth elements)
molybdenum oxides, NaEu(MoO4)2

47,48 has only the tetrago-
nal scheelite-type structure with a statistical distribution of M+

and R3+. KR(MoO4)2 (R = La330,31-Ce49) has similar statistical
distribution of K+ and R3+. Increasing the r(K)-r(R) difference
from 0.367 Å (Ce) to 0.401 Å (Nd) turns the K+ and R3+

distribution into an ordered one, forming the incommensur-
ately modulated structures (R = Nd−Eu). Up to R = Dy,
anorthic scheelite-type phases with the α-KEu(MoO4)2

structure are formed.50 Increasing the r(K)-r(R) difference
further, from 0.483 Å (Dy) to 0.491 Å (Y) results in phases
with the nonscheelite KY(MoO4)2-type structure. Thus, the
scheelite-type structure is apparently restricted to r(A′)-r(A″)
values below 0.49 Å.

3.6. HAADF-STEM Observations. The HAADF-STEM
image of β-KEu(MoO4)2 along the most informative zone axis
[001] is presented in Figure 9, the bright dots corresponding to
the projected cationic columns. The A (K or Eu) and B (Mo)
cations project onto each other along this direction. The

Figure 7. The ac projection of the crystal structure for the two
KEu(MoO4)2 modifications (only K, Eu, and Mo cations are shown
for simplicity): β- (a) and α- (b).

Figure 8. Eu-layers in α- (a,b) and β-KEu(MoO4)2 (c,d) structures.

Figure 9. [001] HAADF-STEM image of β-K0.5Eu0.5MoO4 and the
structural model (only K and Eu cations are shown for simplicity)
overlay on the experimental HAADF-STEM image (bottom). Red
balls are Eu positions, blue rings are K positions.
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brightness of the dots on HAADF-STEM images is related to
the average Z of the whole projected atomic column (ZEu = 63;
ZK = 19; ZMo = 42). The average Z of oxygen columns is low
relative to that of cation columns, which makes the oxygen
columns invisible on the image. The brighter bands correspond
to the Eu/Mo layers. The HAADF-STEM image shows that the
β-phase is (3+1)-dimensionally modulated. The brightness of
the dots on the image varies due to the compositional
modulation, showing a wavy contrast; the periodicity and
orientation of the variation agree with the modulation vector
seen on the ED patterns.
3.7. Luminescent Properties. The luminescent properties

were measured for four different samples: the low temperature
α-phase, the samples annealed at 973 and 1173 K, and the high
temperature β-phase. In Figure 10, the excitation (λem = 615

nm) and emission (λex = 395 nm) spectra are shown, and the
characteristic 4f-4f transitions of Eu3+ dominate in both spectra.
In the excitation spectrum an additional dual broad band can be
observed in the short wavelength region. These broad features
are in general linked to host related mechanisms like charge
transfer states and point to an energy transfer between the host
and the luminescent ion. Apparently, the annealing temperature
has an influence on the efficiency of this energy transfer. The
excitation spectrum of the β-phase exhibits the highest
contribution of the charge transfer band and thus the most
efficient energy transfer mechanism between the host and the
luminescent ion as compared to direct excitation. For all

samples, the majority of the emission can be ascribed to the
5D0 − 7F2 forced electric dipole transition at around 615 nm,
indicating that the site symmetry of the A position, and thus the
position of the Eu3+ ion, possesses no inversion center.51 This
confirms the relatively low site symmetry as established by the
structural data. Typically, the local environment of the Eu3+

ions has only a minor influence on the spectra and differences
are limited to small shifts in energy levels and thus in the
positions of the transitions in the spectra; therefore, measure-
ments at low temperature are needed to avoid thermally
induced peak broadening. Figure 11, measured at a temperature

of 10 K, reveals small differences in the emission from the 5D0
level for the studied samples. In all materials, the 5D0 − 7F0
transition is well separated from the three peaks of the
5D0 − 7F1 transition between 590 and 600 nm. For the α-phase,
the 5D0 − 7F0 transition is observed at 579.5 nm, but it is
shifted to 579 nm for the annealed and the high temperature β-
phase samples. Apparently, the 5D0 level shifts 2 meV to higher
energies after annealing the samples. The annealing induces
also changes in the 7F2 multiplet splitting, as reflected in the
5D0 − 7F2 transition (Figure 11(bottom)). However, calculating
the barycenter energy for the 7F2 level (i.e., in the absence of
crystal field splitting) is not possible with sufficient precision
due to the involvement of multiple overlapping energy levels.
The inset of Figure 10 shows that, in addition to the above

differences between the samples, the fraction of emission
coming from the higher lying 5D2 and

5D1 levels is relatively
much more prominent for the high temperature β-phase as
compared to the other modifications. In general, the non-
radiative depopulation of the higher lying 5DJ levels to the 5D0
level can occur by two mechanisms, cross-relaxation and
multiphonon relaxation. Cross-relaxation between two neigh-

Figure 10. Excitation (a) (λem = 615 nm) and emission (b) (λex = 395
nm) spectra of four KEu(MoO4)2 samples at room temperature. The
inset shows the emission of the 5D1 and

5D2 level normalized to the
peak of the emission of the 5D0 level for all samples at room
temperature.

Figure 11. Emission (λex = 395 nm) of the 5D0 level at 10 K: 5D0 −
7F0 (up) and

5D0 − 7F2 (down) transitions.
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boring ions involves an energy transfer of the 5D1 − 5D0 energy
difference from one ion to the other. A relatively small distance
between the luminescent ions is necessary for this transfer
process to occur, and thus a (locally) high Eu3+ concentration is
needed. A second way of depopulating higher lying energy
levels in ions is by multiphonon relaxation. In this case the
energy of the phonons should be resonant with the energy
difference between the higher and the lower lying level.
In order to gain more insight in the involved mechanisms,

time-resolved measurements were performed. In Figure 12 the

decay profiles (λexc = 337 nm) of the 5D0 − emission of all the
samples both at 10 K and at TR are shown to be very different.
The modulated monoclinic sample annealed at 973 K shows a
monoexponential decay and fitting the expression I(t) = I0·
exp(− t/τ) to the experimental data yields a single decay
constant of τ = 540 μs at 10K. For the other modifications a
deviation from this single exponential decay is observed, and an
extra short component appears in the decay, being τ = 280 μs
for the α-phase and the sample annealed at 1173K and τ = 160
μs for the β-modification. In both cases, the fraction of fast
decay ( f 2 = (I2τ2)/(I1τ1 + I2τ2)) is ca. 0.75. The suppression of
this second component in the decay proves that the annealing
at 973 K reduces the quenching centers in the material. By
contrast, higher annealing temperatures tend to have a negative
effect on the internal quantum efficiency of the material. As the
internal quantum efficiency of a specific transition is governed
by the competition between the radiative and nonradiative
decay paths, each with their own rate constant, the nonradiative
decay starts to dominate if its rate constant becomes of the
same order of magnitude as the intrinsic radiative decay rate.
The grayish body color of the β-phase sample reveals indeed an
increased absorption by defects as compared to the other
samples which have a brighter body color, leading to a lower
emission efficiency. The decay constant of the emission from
the 5D1 level is of the order of a microsecond for all four
samples (Figure S4).

At room temperature (TR), the decay of the
5D0 emission of

all samples is much faster as compared to the situation at 10 K.
Apparently, at TR the emission is already partially quenched.
The decay constant of the 5D1 emission is similar for all four
samples (τ = 200 ns), whereas the decay profile of the 5D0
emission differs largely. The invariance of the 5D1 decay reflects
an equally efficient relaxation process from the 5D1 to the 5D0
level for the investigated samples. Therefore, the increased
5D1,2 − 7FJ emission relative to the 5D0 emission of the β-phase
in the steady state spectra should be linked with the fast decay
of the 5D0 emission. This fast decay originates from an
increased probability for nonradiative decay, which is reflected
in a decrease of the internal quantum efficiency of the emission
from the 5D0 level. Due to the 3D framework of Eu3+ atoms in
the β-phase, the Eu ions are highly connected to each other,
making energy transfer from one Eu3+ ion to another and
subsequently to defect centers more probable. In addition,
additional impurities or defects are created by elevated
temperatures in the preparation phase. The combination of
this more efficient transfer process and the increased number of
defects results in an increase of the rate constant for the
nonradiative decay paths. Given that the decay from the 5D0
level is several orders of magnitude slower than from the 5D1
level, the influence of the nonradiative decay rate is much larger
for the 5D0 level. This results in a relatively stronger reduction
for the emission intensity for the transitions starting from the
5D0 level, compared to those from the 5D1 level.
However, it should be noted that for stoichiometric

phosphors much lower quantum efficiencies are usually
observed. For high Eu3+ concentrations, distances between
Eu3+ atoms become so small that cross-relaxation and other
energy transfer processes gain importance, resulting in strong
concentration quenching and thus a reduced emission intensity.
For these scheelites, however, relatively high emission intensity
is found despite the high Eu3+ concentration. In this way, the
relatively low absorption strength of the 4f-4f transitions in
Eu3+ can be compensated to yield a reasonable absorption upon
direct excitation.

3.8. Electron Energy Loss Spectroscopy. In order to
pinpoint the effect of structural changes and of differences in
thermal treatments on the luminescent properties, low-loss
EELS spectroscopy can be applied since it is a local technique
and therefore facilitates correlating spectra with certain
individual crystallites or even domains. In our earlier EELS
measurements performed on NaxEuy(MoO4)z and R2(MoO4)3
(R = Eu, Gd),48,52 we determined the relation between the
structure/cation distribution and the number and position of
bands in the UV−vis-IR regions of the EELS energy spectrum.
EELS spectra are shown in the 150 to 1200 nm range

(equivalent to 1 to 8 eV) (Figure 13), covering three different
regions of the electromagnetic spectrum: ultraviolet (UV)
below 380 nm (region I), visible (Vis) from 380 to 740 nm
(region II), and infrared (IR) above 780 nm (Region III). All
EELS spectra show a broad absorption band in region I. The
positions of these broad absorption bands (∼180−215 nm) are
similar to the positions of the same bands (∼215−240 nm) on
the EELS spectra of earlier studied NaxEuy(MoO4)z

28 and
R2(MoO4)3 (R = Gd, Eu).52

In comparing the EELS spectra with the optical emission and
excitation spectra, one has to keep in mind that EELS probes all
interband transitions, also the optically forbidden transitions
involving nondipole and transitions involving momentum
transfer. As these nonoptical transitions probe a wider range

Figure 12. Decay profiles of the 5D0 − emission (λexc = 337 nm) at 10
K (up) and at room temperature (down). The dashed lines are
exponential fits.
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of the band structure of the material, the EELS spectra contains
less sharp features, but nevertheless clear differences between
the different materials are apparent.
Changing the KEu(MoO4)2 structure from the anorthic α-

phase to the modulated monoclinic phase during the annealing
at 973 K (Table S1 of the Supporting Information) leads to a
shift of the maximum from ∼215 nm to ∼180 nm (Figure 13).
Further increase of the annealing temperature from 973 to
1173 K returns to an initial maximum value ∼215 nm.
Moreover the change of cooling conditions from slow cooling

to liquid nitrogen quenching barely changes the EELS spectrum
over the entire range of wavelengths.
Some peculiarities are observed in regions II and III of the

investigated compound. As shown in Figure 13, the EELS
spectrum of K2MoO4 is characterized by the presence of a
second absorption band at ∼500 nm, while the EELS spectra of
KEu(MoO4)2 prepared at 973, 1173 (slow cooling), and 1203
K (quenching) do not contain clearly observed peaks in the
visible and infrared regions but broad absorption bands appear
around 875 nm and a shoulder in the violet-blue part of the
visible range which can further be seen in the spectrum of α-
KEu(MoO4)2. The EELS spectrum of α- KEu(MoO4)2 in the
region from 380 to 1200 nm shows the presence of one
absorption band at ∼680 nm in the visible range. The position
of this band is close to the positions of the same bands on the
EELS spectra of earlier studied Na0.286Eu0.571MoO4 (∼735
nm)48 and β′-R2(MoO4)3 (R = Gd, Eu; 680−700 nm)52

providing hints that it is related to the Eu3+ excitation. Thermal
annealing of α-KEu(MoO4)2 and the transformation from the
anorthic structure to the modulated monoclinic structure leads
to a vanishing of the band at ∼680 nm and the appearance of a
new broad absorption band at ∼875 nm which remains for
both types of cooling of the β-KEu(MoO4)2. In contrast with
Na5Eu(MoO4)4

48 and both modifications of Eu2(MoO4)3,
52

EELS spectra of all KEu(MoO4)2 samples contain no peaks
associated with Eu−Eu interactions in the structure in the
infrared region >1000 nm.
The band observed in the EELS spectra in the range 400−

1000 nm (1−3 eV) is related to 4f-4f transitions of the Eu3+

ions. The 4f-4f transitions are forbidden by the Laporte
selection rule but forced electric dipole and magnetic dipole
transitions (called “hypersensitive transitions”53 |ΔL| ≤ 2, |ΔJ|
≤ 2, ΔS = 0) are usually observed in optical excitation and
emission spectra54−56 and are at the origin of the interest of
phosphors as laser or light emitters and usually seen as sharp
lines. Some further excitations are optically forbidden (the ones
where a small momentum transfer or spin flip is involved) but
can be observed in EELS as was demonstrated in reflection
EELS mode many years ago57,58 by variation of the momentum
or the collected spin, where it was demonstrated that 4f-4f
transitions give rise to a large band in EELS. As we use large
collection angles and much higher electron velocities as
compared to reflection EELS in the experiment reported
here, dipole-forbidden 4f-4f transitions are accessible. There-
fore, the 7F0,

7F1 →
5Dj transitions are visible in EELS as well,

resulting in the observed broad band.
Thus, the local low loss EELS measurements show a clear

difference between the anorthic α-KEu(MoO4)2 and the
modulated monoclinic β-phase and an influence of the
synthesis conditions on the band positions.

4. CONCLUSION
The α- and β-polymorphs of KEu(MoO4)2 were synthesized by
a solid state method. PXRD study confirmed the existence of
only two polymorphic forms at annealing temperature range
923−1203 K and ambient pressure: a low temperature anorthic
α-phase and a monoclinic high temperature β-phase with an
incommensurately modulated structure. The structures of both
KEu(MoO4)2 polymorphs were studied using different trans-
mission electron microscopy techniques and refined from
synchrotron powder X-ray diffraction data using a (3+1)D
formalism. In both cases the modulation arises due to Eu/K
cation ordering at the A site: the formation of a 2D Eu3+

Figure 13. a) EELS spectra of K2MoO4 (1), α-KEu(MoO4)2 (2), and
KEu(MoO4)2 annealed at 973 K (3) and 1173 K (4) followed by slow
cooling to room temperature and β-KEu(MoO4)2 (5) prepared at
1203 ± 10 K followed by fast quenching to liquid nitrogen plotted as a
function of energy loss. b) Same spectra plotted in wavelength scale. (I
- ultraviolet region, II - visible light, and III - infrared region). Spectra
are normalized in the displayed region and shifted vertically for clarity
of display. Scales were matched for easy comparison with PLE and PL
spectra.
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network is characteristic for the α-phase, while a 3D Eu3+-
framework is observed for the β-phase. The most intense
luminescence provided by Eu3+ is observed in the case of the
minimum size of the Eu3+ clusters (isolated from other Eu3+

ions).59 The higher the concentration of the smallest clusters,
the better luminescence properties can be observed.47 The
present report shows that a layered network of Eu3+ ions results
in better luminescence properties in comparison to a 3D
framework of Eu3+ ions. Hence, the Eu3+-framework and the
size of the Eu3+ clusters affect the luminescence properties of
the Eu3+ containing compounds.
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(14) Benoît, G.; Veŕonique, J.; Arnaud, A.; Alain, G. Solid State Sci.
2011, 13, 460−467.
(15) Huang, X.; Wang, G. Growth and optical characteristics of
Er3+:LiLa(MoO4)2 crystal. J. Alloys Compd. 2009, 475, 693−697.
(16) Huang, X.; Wang, G. Growth, thermal and spectroscopic
characteristics of Nd3+:LiGd(MoO4)2 crystal. J. Phys. D: Appl. Phys.
2008, 41, 225401.
(17) Pang, Z. L.; Zhang, L. Z.; Lin, Z. B.; Wang, G. F. Growth and
spectroscopic characterisation of Tm3+/Yb3+ codoped LiGd(MoO4)2
crystal. Mater. Res. Innovations 2008, 12, 30−34.
(18) Zhao, D.; Li, F.; Chen, W.; Zhang, H. Scheelite-type
NaEr(MoO4)2. Acta Crystallogr., Sect. E: Struct. Rep. Online 2010, 66,
i36.
(19) Kuz’micheva, G. M.; Lis, D. A.; Subbotin, K. A.; Rybakov, V. B.;
Zharikov, E. V. Growth and structural X-ray investigations of scheelite-
like single crystals Er, Ce:NaLa(MoO4)2 and Yb:NaGd(WO4)2. J.
Cryst. Growth 2005, 275, e1835−e1842.
(20) Voron’ko, Y. K.; Subbotin, K. A.; Shukshin, V. E.; Lis, D. A.;
Ushakov, S. N.; Popov, A.; Zharikov, E. V. Growth and spectroscopic
investigations of Yb3+-doped NaGd(MoO4)2 and NaLa(MoO4)2
new promising laser crystals. Opt. Mater. 2006, 29, 246−252.
(21) Wu, J.; Yan, B. Room-temperature solid-state reaction behavior,
hydrothermal crystallization and physical characterization of NaRE-
(MoO4)2, and Na5Lu(MoO4)4 compounds. J. Am. Ceram. Soc. 2010,
93, 2188−2194.
(22) Sleight, A. W.; Aykan, K.; Rogers, D. B. New nonstoichiometric
molybdate, tungstate, and vanadate catalysts with the scheelite-type
structure. J. Solid State Chem. 1975, 13, 231−236.
(23) Rath, M.; Müller-Buschbaum, Hk. Zur kristallstruktur von silber-
lanthanoid-oxomolybdaten AgLnMo2O8: einkristalluntersuchungen an
AgSmMo2O8 und AgYbMo2O8 mit einer notiz über mikrokristallines
material für Ln = Y, La. J. Alloys Compd. 1993, 198, 193−196.
(24) Shi, F.; Meng, J.; Ren, Y. Preparation structure and physical
properties of new silver lanthanide molybdenum oxides [AgLnMo2O8,
(Ln = La-Nd and Sm)]. Mater. Res. Bull. 1995, 30, 1401−1405.
(25) Taira, N.; Hinatsu, Y. Magnetic properties of silver lanthanide
molybdates AgLnMo2O8 (Ln = lanthanide). J. Mater. Chem. 2002, 12,
148−152.
(26) Hanuza, J.; Benzar, A.; Haznar, A.; Maczka, M.; Pietraszko, A.;
van der Maas, J. H. Structure and vibrational dynamics of tetragonal
NaBi(WO4)2 scheelite crystal. Vib. Spectrosc. 1996, 12, 25−36.
(27) Volkov, V.; Cascales, C.; Kling, A.; Zaldo, C. Growth, structure,
and evaluation of laser properties of LiYb(MoO4)2 single crystal.
Chem. Mater. 2005, 17, 291−300.
(28) Cascales, C.; Serrano, M. D.; Esteban-Betegoń, F.; Zaldo, C.;
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